Utilisation machine de contrôle Tridimensionnelle

Usinage - outillage

31/10/2025

RÉSUMÉ

Cette formation permet aux participants de maîtriser l'utilisation d'une machine de contrôle tridimensionnelle, en apprenant à configurer, mesurer, analyser les résultats et générer des rapports pour des pièces industrielles complexes.

PUBLIC ET PRÉREQUIS

- Techniciens, opérateurs et métrologues souhaitant apprendre à utiliser une machine de contrôle tridimensionnelle (MMT).
- Professionnels travaillant dans des secteurs nécessitant des contrôles de haute précision (mécanique, aéronautique, automobile, etc.).
- Connaissances de base en lecture de plans techniques et tolérances géométriques (cotation ISO/GPS).
- Notions en métrologie industrielle.

LES OBJECTIFS

- Comprendre le fonctionnement et les principes de base d'une machine de contrôle tridimensionnelle (MMT).
- Apprendre à configurer et à utiliser une machine MMT pour effectuer des contrôles dimensionnels.
- Savoir interpréter les résultats des mesures et identifier les nonconformités.
- Exploiter les logiciels associés pour réaliser des contrôles et générer des rapports.

OUTILS PÉDAGOGIQUES

Formation en présentiel avec alternance d'apports théoriques et de mises en situation pratiques pour ancrer les apprentissages et/ou en distanciel pour certains modules.

Salles de Formation équipées pour utilisation de supports pédagogiques classiques et numériques. Plateaux techniques adaptés et aménagés d'équipements spécifiques

DURÉE DE LA FORMATION

3 jours / 21 heures

ACCUEIL PSH

Formation ouverte aux personnes en situation de handicap. Moyens de compensation à étudier avec le référent handicap du centre concerné.

Les + Fab'Academy

- + de 1400 Jeunes formés en apprentissage chaque année
- + de 5300 salariés accompagnés en formation continue
- + de 1720 entreprises nous font confiance (TPE, PME, groupes industriels)
- Diplômes reconnus par l'Etat
- Pédagogie innovante (par projets, en îlots, parcours individualisés...)
- Equipement en machines modernes qui préparent aux métiers de demain
- 7 implantations en Pays de la Loire avec des campus neufs et modernes
- 24000m² de plateaux techniques et performants (outils numériques, cellules robotisées...)

CONTENU DE LA FORMATION

Introduction aux machines de mesure tridimensionnelles

- Présentation générale des machines MMT :
- Fonctionnement et principes fondamentaux des MMT.
- Les différents types de MMT : à portique, à bras articulé, à bras horizontal, etc.

- Applications des machines MMT dans l'industrie.
- Principes de métrologie tridimensionnelle :
- Concepts de base : points, lignes, surfaces, plans de référence.
- Cotation ISO/GPS (tolérances dimensionnelles, géométriques et positionnelles).
- Exercices pratiques: prise en main de la machine MMT et exploration des axes (X, Y, Z).

Configuration et mise en œuvre de la machine MMT

- Installation et réglages :
- Mise en marche de la machine MMT et vérifications de base.
- Calibration de la machine et des palpeurs.
- Programmation des contrôles :
- Création et définition des systèmes de coordonnées.
- Alignement et positionnement de la pièce sur la machine (origines, fixations).
- Utilisation des logiciels associés pour configurer les séquences de contrôle.
- Contrôles dimensionnels:
- Mesure des dimensions (longueur, largeur, hauteur).
- Analyse des formes simples (cylindre, cône, sphère) et complexes.
- Techniques de palpage : palpeurs tactiles
- Exercices pratiques : configuration d'un programme de contrôle pour une pièce simple et réalisation des mesures.

Interprétation des résultats et analyse des mesures

- Lecture et interprétation des résultats :
- Comprendre les écarts entre les mesures et les tolérances.
- Analyse des non-conformités et identification des défauts.
- Rapports de contrôle :
- Génération de rapports détaillés à partir du logiciel de la MMT.
- Présentation des résultats sous forme graphique et tabulaire.
- Exercices pratiques : analyse des mesures pour différentes pièces et création de rapports de contrôle.

Étude de cas pratique : Contrôle complet d'une pièce industrielle

- Planification du contrôle :
- Lecture et interprétation du plan de la pièce à contrôler.
- Définition des points de contrôle, des systèmes de coordonnées et des tolérances.
- Mise en œuvre :
- Réalisation complète du contrôle sur une pièce réelle (palpage, mesures, validation).
- Génération du rapport de contrôle et analyse des résultats.
- Exercices pratiques : contrôle complet d'une pièce industrielle en autonomie sous supervision.

VALIDATION ET CERTIFICATION

Attestation de fin de formation

DATE DE MISE À JOUR

03/01/2025

Angers - 02 21 83 04 85 Cholet - 02 41 49 10 00 Laval - 02 43 69 03 33 Le Mans - 02 21 83 04 87 Saint-Nazaire - 02 21 83 04 90